Just run from the folder it's in, and finished environment
This commit is contained in:
parent
1bcb881d3f
commit
a911943176
|
@ -7,7 +7,7 @@ from azure.ai.ml.entities import Data
|
|||
from ml_client import create_or_load_ml_client
|
||||
|
||||
name_dataset = "diabetes-dataset"
|
||||
data_folder = "./azuremlpythonsdk-v2/data/diabetes.csv"
|
||||
data_folder = "./data/diabetes.csv"
|
||||
|
||||
|
||||
def create_tabular_dataset():
|
||||
|
|
|
@ -13,12 +13,12 @@ custom_env_name = "custom-scikit-learn"
|
|||
|
||||
def create_docker_environment():
|
||||
# 1. Create or Load a ML client
|
||||
ml_client = XXXXX()
|
||||
ml_client = create_or_load_ml_client()
|
||||
|
||||
# 2. Create a Python environment for the experiment
|
||||
env_docker_image = XXXXX(
|
||||
env_docker_image = Environment(
|
||||
name=custom_env_name,
|
||||
conda_file=os.path.join(dependencies_dir, "XXXXX"),
|
||||
conda_file=os.path.join(dependencies_dir, "conda.yml"),
|
||||
image="mcr.microsoft.com/azureml/openmpi4.1.0-ubuntu22.04:latest",
|
||||
)
|
||||
ml_client.environments.create_or_update(env_docker_image)
|
||||
|
|
Loading…
Reference in a new issue