Init and have all packages required
This commit is contained in:
		
						commit
						782aba19ba
					
				
					 53 changed files with 21896 additions and 0 deletions
				
			
		
							
								
								
									
										115
									
								
								solution-v2/diabetes_training/diabetes_training.py
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										115
									
								
								solution-v2/diabetes_training/diabetes_training.py
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,115 @@
 | 
			
		|||
# Import libraries
 | 
			
		||||
import argparse
 | 
			
		||||
import os
 | 
			
		||||
 | 
			
		||||
import matplotlib.pyplot as plt
 | 
			
		||||
import mlflow
 | 
			
		||||
import mlflow.sklearn
 | 
			
		||||
import numpy as np
 | 
			
		||||
import pandas as pd
 | 
			
		||||
from sklearn.metrics import roc_auc_score, roc_curve
 | 
			
		||||
from sklearn.model_selection import train_test_split
 | 
			
		||||
from sklearn.tree import DecisionTreeClassifier
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def main():
 | 
			
		||||
    """Main function of the script."""
 | 
			
		||||
 | 
			
		||||
    # Input and output arguments
 | 
			
		||||
    # Get script arguments
 | 
			
		||||
    parser = argparse.ArgumentParser()
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--data",
 | 
			
		||||
        type=str,
 | 
			
		||||
        help="path to input data",
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument("--registered_model_name", type=str, help="model name")
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    print(" ".join(f"{k}={v}" for k, v in vars(args).items()))
 | 
			
		||||
 | 
			
		||||
    # Start Logging
 | 
			
		||||
    mlflow.start_run()
 | 
			
		||||
 | 
			
		||||
    # enable autologging
 | 
			
		||||
    mlflow.sklearn.autolog()
 | 
			
		||||
 | 
			
		||||
    # load the diabetes data (passed as an input dataset)
 | 
			
		||||
    print("input data:", args.data)
 | 
			
		||||
 | 
			
		||||
    diabetes = pd.read_csv(args.data)
 | 
			
		||||
 | 
			
		||||
    mlflow.log_metric("num_samples", diabetes.shape[0])
 | 
			
		||||
    mlflow.log_metric("num_features", diabetes.shape[1] - 1)
 | 
			
		||||
 | 
			
		||||
    # Separate features and labels
 | 
			
		||||
    X, y = (
 | 
			
		||||
        diabetes[
 | 
			
		||||
            [
 | 
			
		||||
                "Pregnancies",
 | 
			
		||||
                "PlasmaGlucose",
 | 
			
		||||
                "DiastolicBloodPressure",
 | 
			
		||||
                "TricepsThickness",
 | 
			
		||||
                "SerumInsulin",
 | 
			
		||||
                "BMI",
 | 
			
		||||
                "DiabetesPedigree",
 | 
			
		||||
                "Age",
 | 
			
		||||
            ]
 | 
			
		||||
        ].values,
 | 
			
		||||
        diabetes["Diabetic"].values,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Split data into training set and test set
 | 
			
		||||
    X_train, X_test, y_train, y_test = train_test_split(
 | 
			
		||||
        X, y, test_size=0.30, random_state=0
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Train a decision tree model
 | 
			
		||||
    print("Training a decision tree model")
 | 
			
		||||
    model = DecisionTreeClassifier().fit(X_train, y_train)
 | 
			
		||||
 | 
			
		||||
    # calculate accuracy
 | 
			
		||||
    y_hat = model.predict(X_test)
 | 
			
		||||
    accuracy = np.average(y_hat == y_test)
 | 
			
		||||
    print("Accuracy:", accuracy)
 | 
			
		||||
    mlflow.log_metric("Accuracy", float(accuracy))
 | 
			
		||||
 | 
			
		||||
    # calculate AUC
 | 
			
		||||
    y_scores = model.predict_proba(X_test)
 | 
			
		||||
    auc = roc_auc_score(y_test, y_scores[:, 1])
 | 
			
		||||
    print("AUC: " + str(auc))
 | 
			
		||||
    mlflow.log_metric("AUC", float(auc))
 | 
			
		||||
 | 
			
		||||
    # plot ROC curve
 | 
			
		||||
    fpr, tpr, thresholds = roc_curve(y_test, y_scores[:, 1])
 | 
			
		||||
    fig = plt.figure(figsize=(6, 4))
 | 
			
		||||
    # Plot the diagonal 50% line
 | 
			
		||||
    plt.plot([0, 1], [0, 1], "k--")
 | 
			
		||||
    # Plot the FPR and TPR achieved by our model
 | 
			
		||||
    plt.plot(fpr, tpr)
 | 
			
		||||
    plt.xlabel("False Positive Rate")
 | 
			
		||||
    plt.ylabel("True Positive Rate")
 | 
			
		||||
    plt.title("ROC Curve")
 | 
			
		||||
    fig.savefig("ROC.png")
 | 
			
		||||
    mlflow.log_artifact("ROC.png")
 | 
			
		||||
    plt.show()
 | 
			
		||||
 | 
			
		||||
    # Registering the model to the workspace
 | 
			
		||||
    print("Registering the model via MLFlow")
 | 
			
		||||
    mlflow.sklearn.log_model(
 | 
			
		||||
        sk_model=model,
 | 
			
		||||
        registered_model_name=args.registered_model_name,
 | 
			
		||||
        artifact_path=args.registered_model_name,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Saving the model to a file
 | 
			
		||||
    mlflow.sklearn.save_model(
 | 
			
		||||
        sk_model=model,
 | 
			
		||||
        path=os.path.join(args.registered_model_name, "trained_model"),
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # Stop Logging
 | 
			
		||||
    mlflow.end_run()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    main()
 | 
			
		||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue