Init and have all packages required
This commit is contained in:
commit
782aba19ba
53 changed files with 21896 additions and 0 deletions
123
azuremlpythonsdk-v2/diabetes_hyperdrive/diabetes_training.py
Normal file
123
azuremlpythonsdk-v2/diabetes_hyperdrive/diabetes_training.py
Normal file
|
@ -0,0 +1,123 @@
|
|||
# Import libraries
|
||||
import argparse
|
||||
import os
|
||||
|
||||
import mlflow
|
||||
import mlflow.sklearn
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.ensemble import GradientBoostingClassifier
|
||||
from sklearn.metrics import roc_auc_score
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
|
||||
def main():
|
||||
"""Main function of the script."""
|
||||
|
||||
# Input and output arguments
|
||||
|
||||
# Get script arguments
|
||||
parser = XXXX()
|
||||
|
||||
# Input dataset
|
||||
parser.add_argument(
|
||||
"XXXX",
|
||||
type=str,
|
||||
help="path to input data",
|
||||
)
|
||||
|
||||
# Model name
|
||||
parser.add_argument("XXXX", type=str, help="model name")
|
||||
|
||||
# Hyperparameters
|
||||
parser.add_argument(
|
||||
"XXXX",
|
||||
type=float,
|
||||
dest="learning_rate",
|
||||
default=0.1,
|
||||
help="learning rate",
|
||||
)
|
||||
parser.add_argument(
|
||||
"XXXX",
|
||||
type=int,
|
||||
dest="n_estimators",
|
||||
default=100,
|
||||
help="number of estimators",
|
||||
)
|
||||
|
||||
# Add arguments to args collection
|
||||
args = parser.parse_args()
|
||||
print(" ".join(f"{k}={v}" for k, v in vars(args).items()))
|
||||
|
||||
# Start Logging
|
||||
mlflow.XXXX()
|
||||
|
||||
# enable autologging
|
||||
mlflow.XXXX()
|
||||
|
||||
# load the diabetes data (passed as an input dataset)
|
||||
print("input data:", args.data)
|
||||
|
||||
diabetes = pd.read_csv(args.data)
|
||||
|
||||
# Separate features and labels
|
||||
X, y = (
|
||||
diabetes[
|
||||
[
|
||||
"Pregnancies",
|
||||
"PlasmaGlucose",
|
||||
"DiastolicBloodPressure",
|
||||
"TricepsThickness",
|
||||
"SerumInsulin",
|
||||
"BMI",
|
||||
"DiabetesPedigree",
|
||||
"Age",
|
||||
]
|
||||
].values,
|
||||
diabetes["Diabetic"].values,
|
||||
)
|
||||
|
||||
# Split data into training set and test set
|
||||
X_train, X_test, y_train, y_test = XXXX(
|
||||
X, y, test_size=0.30, random_state=0
|
||||
)
|
||||
|
||||
# Train a Gradient Boosting classification model
|
||||
# with the specified hyperparameters
|
||||
print("Training a classification model")
|
||||
model = XXXX(
|
||||
learning_rate=XXXX, n_estimators=XXXX
|
||||
).fit(X_train, y_train)
|
||||
|
||||
# calculate accuracy
|
||||
y_hat = model.XXXX(X_test)
|
||||
accuracy = np.average(y_hat == y_test)
|
||||
print("Accuracy:", accuracy)
|
||||
mlflow.log_metric("Accuracy", float(accuracy))
|
||||
|
||||
# calculate AUC
|
||||
y_scores = model.XXXX(X_test)
|
||||
auc = roc_auc_score(y_test, y_scores[:, 1])
|
||||
print("AUC: " + str(auc))
|
||||
mlflow.log_metric("AUC", float(auc))
|
||||
|
||||
# Registering the model to the workspace
|
||||
print("Registering the model via MLFlow")
|
||||
mlflow.XXXX(
|
||||
sk_model=model,
|
||||
registered_model_name=args.registered_model_name,
|
||||
artifact_path=args.registered_model_name,
|
||||
)
|
||||
|
||||
# Saving the model to a file
|
||||
mlflow.sklearn.save_model(
|
||||
sk_model=model,
|
||||
path=os.path.join(args.registered_model_name, "trained_model"),
|
||||
)
|
||||
|
||||
# Stop Logging
|
||||
mlflow.XXXX()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Add table
Add a link
Reference in a new issue