We get a little further on the azml_02 but it seems to fail still
This commit is contained in:
parent
032b05b9c3
commit
1acf43fa82
|
@ -23,17 +23,19 @@ best_model_name = "best_diabetes_model"
|
|||
|
||||
def main():
|
||||
# 1. Create or Load a ML client
|
||||
ml_client = XXXX()
|
||||
ml_client = create_or_load_ml_client()
|
||||
|
||||
# 2. Create compute resources
|
||||
XXXX()
|
||||
create_or_load_aml()
|
||||
|
||||
# 3. Create and register a File Dataset
|
||||
XXXX()
|
||||
latest_version_dataset = XXXX()
|
||||
create_tabular_dataset()
|
||||
latest_version_dataset = max(
|
||||
[int(d.version) for d in ml_client.data.list(name=name_dataset)]
|
||||
)
|
||||
|
||||
# 4. Environment
|
||||
environment_names = [env.name for XXXX in ml_client.environments.list()]
|
||||
environment_names = [env.name for env in ml_client.environments.list()]
|
||||
if custom_env_name not in environment_names:
|
||||
create_docker_environment()
|
||||
|
||||
|
@ -47,25 +49,25 @@ def main():
|
|||
path=f"azureml:{name_dataset}:{latest_version_dataset}",
|
||||
),
|
||||
registered_model_name=registered_model_name,
|
||||
learning_rate=XXXX(values= XXXX),
|
||||
n_estimators=XXXX(values=XXXX),
|
||||
learning_rate=Choice(values= [0.01, 0.1, 1.0]),
|
||||
n_estimators=Choice(values=[10, 100]),
|
||||
),
|
||||
code=experiment_folder,
|
||||
command=(
|
||||
"python XXXX"
|
||||
+ " --data XXXX"
|
||||
+ " --registered_model_name XXXX"
|
||||
+ " --learning_rate XXXX"
|
||||
+ " --n_estimators XXXX"
|
||||
"python ${{inputs.script_name}}"
|
||||
+ " --data ${{inputs.data}}"
|
||||
+ " --registered_model_name ${{inputs.registered_model_name}}"
|
||||
+ " --learning_rate ${{inputs.learning_rate}}"
|
||||
+ " --n_estimators ${{inputs.n_estimators}}"
|
||||
),
|
||||
environment=XXXX,
|
||||
environment=f"{custom_env_name}@latest",
|
||||
compute=AML_COMPUTE_NAME,
|
||||
experiment_name=experiment_name,
|
||||
display_name=experiment_name,
|
||||
)
|
||||
|
||||
# Configure hyperdrive settings
|
||||
sweep_job = job_for_sweep.XXXX(
|
||||
sweep_job = job_for_sweep.sweep(
|
||||
compute=AML_COMPUTE_NAME,
|
||||
sampling_algorithm="grid",
|
||||
primary_metric="AUC",
|
||||
|
@ -106,7 +108,7 @@ def main():
|
|||
|
||||
# Register best model
|
||||
print(f"Registering Model {best_model_name}")
|
||||
ml_client.models.XXXX(model=model)
|
||||
ml_client.models.register(model=model)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -17,28 +17,28 @@ def main():
|
|||
# Input and output arguments
|
||||
|
||||
# Get script arguments
|
||||
parser = XXXX()
|
||||
parser = argparse()
|
||||
|
||||
# Input dataset
|
||||
parser.add_argument(
|
||||
"XXXX",
|
||||
"--data",
|
||||
type=str,
|
||||
help="path to input data",
|
||||
)
|
||||
|
||||
# Model name
|
||||
parser.add_argument("XXXX", type=str, help="model name")
|
||||
parser.add_argument("--registered_model_name", type=str, help="model name")
|
||||
|
||||
# Hyperparameters
|
||||
parser.add_argument(
|
||||
"XXXX",
|
||||
"--learning_rate",
|
||||
type=float,
|
||||
dest="learning_rate",
|
||||
default=0.1,
|
||||
help="learning rate",
|
||||
)
|
||||
parser.add_argument(
|
||||
"XXXX",
|
||||
"--n_estimators",
|
||||
type=int,
|
||||
dest="n_estimators",
|
||||
default=100,
|
||||
|
@ -50,10 +50,10 @@ def main():
|
|||
print(" ".join(f"{k}={v}" for k, v in vars(args).items()))
|
||||
|
||||
# Start Logging
|
||||
mlflow.XXXX()
|
||||
mlflow.start_run()
|
||||
|
||||
# enable autologging
|
||||
mlflow.XXXX()
|
||||
mlflow.sklearn.autolog()
|
||||
|
||||
# load the diabetes data (passed as an input dataset)
|
||||
print("input data:", args.data)
|
||||
|
@ -78,32 +78,32 @@ def main():
|
|||
)
|
||||
|
||||
# Split data into training set and test set
|
||||
X_train, X_test, y_train, y_test = XXXX(
|
||||
X_train, X_test, y_train, y_test = train_test_split(
|
||||
X, y, test_size=0.30, random_state=0
|
||||
)
|
||||
|
||||
# Train a Gradient Boosting classification model
|
||||
# with the specified hyperparameters
|
||||
print("Training a classification model")
|
||||
model = XXXX(
|
||||
learning_rate=XXXX, n_estimators=XXXX
|
||||
model = GradientBoostingClassifier(
|
||||
learning_rate=args.learning_rate, n_estimators=args.n_estimators
|
||||
).fit(X_train, y_train)
|
||||
|
||||
# calculate accuracy
|
||||
y_hat = model.XXXX(X_test)
|
||||
y_hat = model.predict(X_test)
|
||||
accuracy = np.average(y_hat == y_test)
|
||||
print("Accuracy:", accuracy)
|
||||
mlflow.log_metric("Accuracy", float(accuracy))
|
||||
|
||||
# calculate AUC
|
||||
y_scores = model.XXXX(X_test)
|
||||
y_scores = model.predict_proba(X_test)
|
||||
auc = roc_auc_score(y_test, y_scores[:, 1])
|
||||
print("AUC: " + str(auc))
|
||||
mlflow.log_metric("AUC", float(auc))
|
||||
|
||||
# Registering the model to the workspace
|
||||
print("Registering the model via MLFlow")
|
||||
mlflow.XXXX(
|
||||
mlflow.sklearn.log_model(
|
||||
sk_model=model,
|
||||
registered_model_name=args.registered_model_name,
|
||||
artifact_path=args.registered_model_name,
|
||||
|
@ -116,7 +116,7 @@ def main():
|
|||
)
|
||||
|
||||
# Stop Logging
|
||||
mlflow.XXXX()
|
||||
mlflow.end_run()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
Loading…
Reference in a new issue