We get a little further on the azml_02 but it seems to fail still
This commit is contained in:
parent
032b05b9c3
commit
1acf43fa82
2 changed files with 31 additions and 29 deletions
|
@ -17,28 +17,28 @@ def main():
|
|||
# Input and output arguments
|
||||
|
||||
# Get script arguments
|
||||
parser = XXXX()
|
||||
parser = argparse()
|
||||
|
||||
# Input dataset
|
||||
parser.add_argument(
|
||||
"XXXX",
|
||||
"--data",
|
||||
type=str,
|
||||
help="path to input data",
|
||||
)
|
||||
|
||||
# Model name
|
||||
parser.add_argument("XXXX", type=str, help="model name")
|
||||
parser.add_argument("--registered_model_name", type=str, help="model name")
|
||||
|
||||
# Hyperparameters
|
||||
parser.add_argument(
|
||||
"XXXX",
|
||||
"--learning_rate",
|
||||
type=float,
|
||||
dest="learning_rate",
|
||||
default=0.1,
|
||||
help="learning rate",
|
||||
)
|
||||
parser.add_argument(
|
||||
"XXXX",
|
||||
"--n_estimators",
|
||||
type=int,
|
||||
dest="n_estimators",
|
||||
default=100,
|
||||
|
@ -50,10 +50,10 @@ def main():
|
|||
print(" ".join(f"{k}={v}" for k, v in vars(args).items()))
|
||||
|
||||
# Start Logging
|
||||
mlflow.XXXX()
|
||||
mlflow.start_run()
|
||||
|
||||
# enable autologging
|
||||
mlflow.XXXX()
|
||||
mlflow.sklearn.autolog()
|
||||
|
||||
# load the diabetes data (passed as an input dataset)
|
||||
print("input data:", args.data)
|
||||
|
@ -78,32 +78,32 @@ def main():
|
|||
)
|
||||
|
||||
# Split data into training set and test set
|
||||
X_train, X_test, y_train, y_test = XXXX(
|
||||
X_train, X_test, y_train, y_test = train_test_split(
|
||||
X, y, test_size=0.30, random_state=0
|
||||
)
|
||||
|
||||
# Train a Gradient Boosting classification model
|
||||
# with the specified hyperparameters
|
||||
print("Training a classification model")
|
||||
model = XXXX(
|
||||
learning_rate=XXXX, n_estimators=XXXX
|
||||
model = GradientBoostingClassifier(
|
||||
learning_rate=args.learning_rate, n_estimators=args.n_estimators
|
||||
).fit(X_train, y_train)
|
||||
|
||||
# calculate accuracy
|
||||
y_hat = model.XXXX(X_test)
|
||||
y_hat = model.predict(X_test)
|
||||
accuracy = np.average(y_hat == y_test)
|
||||
print("Accuracy:", accuracy)
|
||||
mlflow.log_metric("Accuracy", float(accuracy))
|
||||
|
||||
# calculate AUC
|
||||
y_scores = model.XXXX(X_test)
|
||||
y_scores = model.predict_proba(X_test)
|
||||
auc = roc_auc_score(y_test, y_scores[:, 1])
|
||||
print("AUC: " + str(auc))
|
||||
mlflow.log_metric("AUC", float(auc))
|
||||
|
||||
# Registering the model to the workspace
|
||||
print("Registering the model via MLFlow")
|
||||
mlflow.XXXX(
|
||||
mlflow.sklearn.log_model(
|
||||
sk_model=model,
|
||||
registered_model_name=args.registered_model_name,
|
||||
artifact_path=args.registered_model_name,
|
||||
|
@ -116,7 +116,7 @@ def main():
|
|||
)
|
||||
|
||||
# Stop Logging
|
||||
mlflow.XXXX()
|
||||
mlflow.end_run()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue