33-AzureML-2/azuremlpythonsdk-v2/diabetes_training/diabetes_training.py

116 lines
3.2 KiB
Python
Raw Permalink Normal View History

2024-09-04 10:15:43 +02:00
# Import libraries
import argparse
import os
import matplotlib.pyplot as plt
import mlflow
import mlflow.sklearn
import numpy as np
import pandas as pd
from sklearn.metrics import roc_auc_score, roc_curve
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
def main():
"""Main function of the script."""
# Input and output arguments
# Get script arguments
parser = argparse.ArgumentParser()
parser.add_argument(
"--data",
type=str,
help="path to input data",
)
parser.add_argument("--registered_model_name", type=str, help="model name")
args = parser.parse_args()
print(" ".join(f"{k}={v}" for k, v in vars(args).items()))
# Start Logging
mlflow.start_run()
# enable autologging
mlflow.sklearn.autolog()
# load the diabetes data (passed as an input dataset)
print("input data:", args.data)
diabetes = pd.read_csv(args.data)
mlflow.log_metric("num_samples", diabetes.shape[0])
mlflow.log_metric("num_features", diabetes.shape[1] - 1)
# Separate features and labels
X, y = (
diabetes[
[
"Pregnancies",
"PlasmaGlucose",
"DiastolicBloodPressure",
"TricepsThickness",
"SerumInsulin",
"BMI",
"DiabetesPedigree",
"Age",
]
].values,
diabetes["Diabetic"].values,
)
# Split data into training set and test set
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.30, random_state=0
)
# Train a decision tree model
print("Training a decision tree model")
model = DecisionTreeClassifier().fit(X_train, y_train)
# calculate accuracy
y_hat = model.predict(X_test)
accuracy = np.average(y_hat == y_test)
print("Accuracy:", accuracy)
mlflow.log_metric("Accuracy", float(accuracy))
# calculate AUC
y_scores = model.predict_proba(X_test)
auc = roc_auc_score(y_test, y_scores[:, 1])
print("AUC: " + str(auc))
mlflow.log_metric("AUC", float(auc))
# plot ROC curve
fpr, tpr, thresholds = roc_curve(y_test, y_scores[:, 1])
fig = plt.figure(figsize=(6, 4))
# Plot the diagonal 50% line
plt.plot([0, 1], [0, 1], "k--")
# Plot the FPR and TPR achieved by our model
plt.plot(fpr, tpr)
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("ROC Curve")
fig.savefig("ROC.png")
mlflow.log_artifact("ROC.png")
plt.show()
# Registering the model to the workspace
print("Registering the model via MLFlow")
mlflow.sklearn.log_model(
sk_model=model,
registered_model_name=args.registered_model_name,
artifact_path=args.registered_model_name,
)
# Saving the model to a file
mlflow.sklearn.save_model(
sk_model=model,
path=os.path.join(args.registered_model_name, "trained_model"),
)
# Stop Logging
mlflow.end_run()
if __name__ == "__main__":
main()