added a few csv exports

This commit is contained in:
Lillian Oostrom 2022-05-09 20:02:13 +02:00
parent bc53e8b470
commit ac3a7df210
9 changed files with 474236 additions and 37 deletions

View file

@ -28,7 +28,7 @@
},
{
"cell_type": "code",
"execution_count": 72,
"execution_count": 169,
"metadata": {},
"outputs": [
{
@ -40,6 +40,21 @@
"/home/lillian/.conda/envs/stembureaus/lib/python3.10/site-packages/geopandas/geodataframe.py:600: UserWarning: Empty field name at index 928\n",
" for feature in features_lst:\n"
]
},
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m/home/lillian/Code/stembureau-meting/jupyter/stembureau_data.ipynb Cell 2'\u001b[0m in \u001b[0;36m<cell line: 5>\u001b[0;34m()\u001b[0m\n\u001b[1;32m <a href='vscode-notebook-cell:/home/lillian/Code/stembureau-meting/jupyter/stembureau_data.ipynb#ch0000001?line=1'>2</a>\u001b[0m \u001b[39mimport\u001b[39;00m \u001b[39mgeopandas\u001b[39;00m \u001b[39mas\u001b[39;00m \u001b[39mgpd\u001b[39;00m\n\u001b[1;32m <a href='vscode-notebook-cell:/home/lillian/Code/stembureau-meting/jupyter/stembureau_data.ipynb#ch0000001?line=3'>4</a>\u001b[0m crs \u001b[39m=\u001b[39m {\u001b[39m'\u001b[39m\u001b[39minit\u001b[39m\u001b[39m'\u001b[39m:\u001b[39m'\u001b[39m\u001b[39mEPSG:4326\u001b[39m\u001b[39m'\u001b[39m}\n\u001b[0;32m----> <a href='vscode-notebook-cell:/home/lillian/Code/stembureau-meting/jupyter/stembureau_data.ipynb#ch0000001?line=4'>5</a>\u001b[0m df_geojson \u001b[39m=\u001b[39m gpd\u001b[39m.\u001b[39;49mread_file(\u001b[39mr\u001b[39;49m\u001b[39m'\u001b[39;49m\u001b[39m../data/2022gr.geo.json\u001b[39;49m\u001b[39m'\u001b[39;49m, crs\u001b[39m=\u001b[39;49mcrs)\n",
"File \u001b[0;32m~/.conda/envs/stembureaus/lib/python3.10/site-packages/geopandas/io/file.py:244\u001b[0m, in \u001b[0;36m_read_file\u001b[0;34m(filename, bbox, mask, rows, **kwargs)\u001b[0m\n\u001b[1;32m <a href='file:///home/lillian/.conda/envs/stembureaus/lib/python3.10/site-packages/geopandas/io/file.py?line=238'>239</a>\u001b[0m \u001b[39mif\u001b[39;00m kwargs\u001b[39m.\u001b[39mget(\u001b[39m\"\u001b[39m\u001b[39mignore_geometry\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39mFalse\u001b[39;00m):\n\u001b[1;32m <a href='file:///home/lillian/.conda/envs/stembureaus/lib/python3.10/site-packages/geopandas/io/file.py?line=239'>240</a>\u001b[0m \u001b[39mreturn\u001b[39;00m pd\u001b[39m.\u001b[39mDataFrame(\n\u001b[1;32m <a href='file:///home/lillian/.conda/envs/stembureaus/lib/python3.10/site-packages/geopandas/io/file.py?line=240'>241</a>\u001b[0m [record[\u001b[39m\"\u001b[39m\u001b[39mproperties\u001b[39m\u001b[39m\"\u001b[39m] \u001b[39mfor\u001b[39;00m record \u001b[39min\u001b[39;00m f_filt], columns\u001b[39m=\u001b[39mcolumns\n\u001b[1;32m <a href='file:///home/lillian/.conda/envs/stembureaus/lib/python3.10/site-packages/geopandas/io/file.py?line=241'>242</a>\u001b[0m )\n\u001b[0;32m--> <a href='file:///home/lillian/.conda/envs/stembureaus/lib/python3.10/site-packages/geopandas/io/file.py?line=243'>244</a>\u001b[0m \u001b[39mreturn\u001b[39;00m GeoDataFrame\u001b[39m.\u001b[39;49mfrom_features(\n\u001b[1;32m <a href='file:///home/lillian/.conda/envs/stembureaus/lib/python3.10/site-packages/geopandas/io/file.py?line=244'>245</a>\u001b[0m f_filt, crs\u001b[39m=\u001b[39;49mcrs, columns\u001b[39m=\u001b[39;49mcolumns \u001b[39m+\u001b[39;49m [\u001b[39m\"\u001b[39;49m\u001b[39mgeometry\u001b[39;49m\u001b[39m\"\u001b[39;49m]\n\u001b[1;32m <a href='file:///home/lillian/.conda/envs/stembureaus/lib/python3.10/site-packages/geopandas/io/file.py?line=245'>246</a>\u001b[0m )\n",
"File \u001b[0;32m~/.conda/envs/stembureaus/lib/python3.10/site-packages/geopandas/geodataframe.py:600\u001b[0m, in \u001b[0;36mGeoDataFrame.from_features\u001b[0;34m(cls, features, crs, columns)\u001b[0m\n\u001b[1;32m <a href='file:///home/lillian/.conda/envs/stembureaus/lib/python3.10/site-packages/geopandas/geodataframe.py?line=596'>597</a>\u001b[0m features_lst \u001b[39m=\u001b[39m features\n\u001b[1;32m <a href='file:///home/lillian/.conda/envs/stembureaus/lib/python3.10/site-packages/geopandas/geodataframe.py?line=598'>599</a>\u001b[0m rows \u001b[39m=\u001b[39m []\n\u001b[0;32m--> <a href='file:///home/lillian/.conda/envs/stembureaus/lib/python3.10/site-packages/geopandas/geodataframe.py?line=599'>600</a>\u001b[0m \u001b[39mfor\u001b[39;00m feature \u001b[39min\u001b[39;00m features_lst:\n\u001b[1;32m <a href='file:///home/lillian/.conda/envs/stembureaus/lib/python3.10/site-packages/geopandas/geodataframe.py?line=600'>601</a>\u001b[0m \u001b[39m# load geometry\u001b[39;00m\n\u001b[1;32m <a href='file:///home/lillian/.conda/envs/stembureaus/lib/python3.10/site-packages/geopandas/geodataframe.py?line=601'>602</a>\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mhasattr\u001b[39m(feature, \u001b[39m\"\u001b[39m\u001b[39m__geo_interface__\u001b[39m\u001b[39m\"\u001b[39m):\n\u001b[1;32m <a href='file:///home/lillian/.conda/envs/stembureaus/lib/python3.10/site-packages/geopandas/geodataframe.py?line=602'>603</a>\u001b[0m feature \u001b[39m=\u001b[39m feature\u001b[39m.\u001b[39m__geo_interface__\n",
"File \u001b[0;32mfiona/ogrext.pyx:1515\u001b[0m, in \u001b[0;36mfiona.ogrext.Iterator.__next__\u001b[0;34m()\u001b[0m\n",
"File \u001b[0;32mfiona/ogrext.pyx:202\u001b[0m, in \u001b[0;36mfiona.ogrext.FeatureBuilder.build\u001b[0;34m()\u001b[0m\n",
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
@ -60,7 +75,7 @@
},
{
"cell_type": "code",
"execution_count": 73,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -102,7 +117,7 @@
},
{
"cell_type": "code",
"execution_count": 74,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -178,7 +193,7 @@
},
{
"cell_type": "code",
"execution_count": 75,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -222,7 +237,7 @@
},
{
"cell_type": "code",
"execution_count": 76,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -1015,7 +1030,7 @@
},
{
"cell_type": "code",
"execution_count": 77,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -1113,7 +1128,7 @@
},
{
"cell_type": "code",
"execution_count": 78,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -1223,7 +1238,7 @@
},
{
"cell_type": "code",
"execution_count": 79,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@ -1243,7 +1258,7 @@
},
{
"cell_type": "code",
"execution_count": 86,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -1680,7 +1695,7 @@
},
{
"cell_type": "code",
"execution_count": 87,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -2122,7 +2137,7 @@
},
{
"cell_type": "code",
"execution_count": 88,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -2582,7 +2597,7 @@
},
{
"cell_type": "code",
"execution_count": 89,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -2695,7 +2710,7 @@
},
{
"cell_type": "code",
"execution_count": 91,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -2735,7 +2750,7 @@
},
{
"cell_type": "code",
"execution_count": 92,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -2785,7 +2800,7 @@
},
{
"cell_type": "code",
"execution_count": 95,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -2956,7 +2971,7 @@
},
{
"cell_type": "code",
"execution_count": 96,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -3000,7 +3015,7 @@
},
{
"cell_type": "code",
"execution_count": 97,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -3192,7 +3207,7 @@
},
{
"cell_type": "code",
"execution_count": 98,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -3226,7 +3241,7 @@
},
{
"cell_type": "code",
"execution_count": 99,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -3265,7 +3280,7 @@
},
{
"cell_type": "code",
"execution_count": 102,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -3325,7 +3340,7 @@
},
{
"cell_type": "code",
"execution_count": 103,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@ -3344,7 +3359,7 @@
},
{
"cell_type": "code",
"execution_count": 104,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -3516,7 +3531,7 @@
},
{
"cell_type": "code",
"execution_count": 105,
"execution_count": null,
"metadata": {
"scrolled": false
},
@ -3788,7 +3803,7 @@
},
{
"cell_type": "code",
"execution_count": 108,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -4229,7 +4244,7 @@
},
{
"cell_type": "code",
"execution_count": 109,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -4359,7 +4374,7 @@
},
{
"cell_type": "code",
"execution_count": 142,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@ -4373,7 +4388,7 @@
},
{
"cell_type": "code",
"execution_count": 111,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -4405,7 +4420,7 @@
},
{
"cell_type": "code",
"execution_count": 112,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@ -4429,7 +4444,7 @@
},
{
"cell_type": "code",
"execution_count": 113,
"execution_count": null,
"metadata": {
"scrolled": false
},
@ -4460,7 +4475,7 @@
},
{
"cell_type": "code",
"execution_count": 130,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@ -4474,7 +4489,7 @@
},
{
"cell_type": "code",
"execution_count": 115,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -4527,7 +4542,7 @@
},
{
"cell_type": "code",
"execution_count": 116,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -4848,7 +4863,7 @@
},
{
"cell_type": "code",
"execution_count": 117,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -5229,6 +5244,8 @@
"\n",
" wims_datestack.groupby(pd.Grouper(freq='30Min')).count().plot(kind='bar', y='Openingstijden',width=1, figsize=(25, 25), title=\"Openingstijden stemlokalen staffel {} kiesgerechtigden\".format(label)).set_xticklabels(xticklabels, rotation=-45, ha=\"left\", rotation_mode=\"anchor\")\n",
" #TODO: export excel file\n",
" wims_datestack.to_csv(path_or_buf='../data/export/openingstijden_staffel_{}.csv'.format(label), sep=';', na_rep='', header=True, date_format = '%m-%d %H:%M')\n",
"\n",
"\n",
" #wims_datesplit_16.groupby(wims_datesplit_16[\"Openingstijden 16-03-2022\"].dt.hour).count().plot(kind=\"bar\", y='Openingstijden 16-03-2022')\n",
" #wims_datesplit_16.groupby(pd.Grouper(freq='30Min')).count().plot(kind='bar', y='Openingstijden 16-03-2022')\n",
@ -5238,7 +5255,7 @@
},
{
"cell_type": "code",
"execution_count": 122,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -5266,7 +5283,7 @@
},
{
"cell_type": "code",
"execution_count": 134,
"execution_count": null,
"metadata": {
"scrolled": false
},
@ -5416,7 +5433,7 @@
},
{
"cell_type": "code",
"execution_count": 133,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -5503,7 +5520,7 @@
},
{
"cell_type": "code",
"execution_count": 143,
"execution_count": null,
"metadata": {},
"outputs": [
{
@ -5714,6 +5731,40 @@
" make_graphs_dist(label)"
]
},
{
"cell_type": "code",
"execution_count": 177,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/tmp/ipykernel_112022/688534536.py:6: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" gdf_wims_dedupe.rename(columns = {'CBS gemeentecode': 'gemeentecode'}, inplace = True)\n"
]
}
],
"source": [
"#print(list(gdf_wims_dedupe))\n",
"\n",
"#print(list(df_stemger_clean))\n",
"\n",
"\n",
"gdf_wims_dedupe.rename(columns = {'CBS gemeentecode': 'gemeentecode'}, inplace = True)\n",
"wims_merged = pd.merge(gdf_wims_dedupe, df_stemger_clean, on=['gemeentecode'])\n",
"wims_merged.rename(columns = {'binned': 'staffel'}, inplace = True)\n",
"wims_merged.to_csv(path_or_buf='../data/export/openingstijden_alle_staffels.csv', sep=';', na_rep='', header=True, date_format = '%m-%d %H:%M')\n",
"\n",
"df_nearest.rename(columns = {'CBS gemeentecode': 'gemeentecode'}, inplace = True)\n",
"df_merged = pd.merge(df_nearest, df_stemger_clean, on=['gemeentecode'])\n",
"df_merged.rename(columns = {'binned': 'staffel'}, inplace = True)\n",
"df_merged.to_csv(path_or_buf='../data/export/afstand_alle_staffels.csv', sep=';', na_rep='', header=True, date_format = '%m-%d %H:%M')"
]
},
{
"cell_type": "code",
"execution_count": null,